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MODIS BRDE/AlbedorProducts
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hite SKy Albedo products in New England area with 3
resolutions (500m, 1km, and 0.05 degrees)



regional and local applications

False color composite
of White Sky Albedo

CMG products can be used in global,
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Disturbance Index
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Mean Max LST and EVI for Westermn U.S. (2003}
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Maximum Extent of Persistent Flooding was
created using daily 250 meter resolution
data from the MODIS instrument on the
TERRA satellite. The Vegetative Cover
Conversion algorithm was modified to
process daily data determining the extent of
water per day for all non-cloudy
observations on August 30 through
September S, 2005. The background image is
a mosaic created using Landsat 7 ETM+
bands 7.,4,2 collected in the fall of 2001.
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Amazon Rainforests Green-up with
Sunlight in Dry Season
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MOD12Q2: Global Vegetation Phenology

First global products for
vegetation phenology based
on MODIS EVI data released
for 2001-2004
* Identifies key transition
dates in growing season

e v o @ £ 8 F E 8 ¥

Maturity stability
Maturity onset P

: | _“-"h
Onset EVI decrease "




Footprint of
Urban Climates
on Phenology
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— Phenological signature
extends well beyond
urban periphery

* Exponential decay
— Footprint
» 2.4 x urban area
* Longer growing season




Temperature-Driven Phenology in
Northern Hemisphere

Forests in North America

* Thermal “Time Chilling” Model for 6735341117 8060
Forest Greenup: ™

= C

— TPD is degree days and C is the #
0

days below threshold.
20 40 60 80 100 120 140 160 180 200 220
Number of chill days <0 °C from dormancy to greenup onset (Cg)

— Explains ~ 83-95% of variance in
Top

Forests in Europe and Asia

Tpp=563.45+1251.33¢ 017

* Implication:
— High latitude warming may have
small effect on forests

— Lower latitudes may have delayed

delayed greenup!
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Number of chill days <0 °C from dormancy to greenup onset (Cg)
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Global Effective Growing Season Length

ST Legend
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US West Montane zone vegetation dynamics change
in response to a global warming-like temperature
increase induced by a severe drought: “Plants green
up and ecosystem becomes vulnerable to invasive
species’”

Kamel Didan, Alfredo Huete

TBRS Lab., SWES Dept.
The University of Arizona

Terrestrial Biophysics & Remote Sensing Lab ,@;
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Cumulative VI anomaly
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Cumulative VI anomaly (the Rockies)
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Developing an Integrated MODIS-SeaWinds Phenology Measure
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Map (a) of the statistical correspondence (7<)
between growing season 8-day composite
MODIS LAI (MOD15A2) and SeaWinds Ku
band backscatter for January 2000 through
August 2002 for North America. The MODIS
land cover product is also shown (b). Temporal
variability in the SeaWinds Ku-band
backscatter signal corresponds closely with
seasonal variations in MODIS derived LAI for
grassland and broadleaf deciduous forest
biomes of North America. Statistical
correspondence is lower where LAT seasonal
variability is small (e.g., evergreen forests)
and where biomass is low (arid and semiarid
shrublands). The combined information from
MODIS and SeaWinds may provide an
improved measure of vegetation phenology
that is less constrained by atmospheric
aerosol contamination (e.g., clouds, smoke)
and solar illumination effects.

Source: Frolking, S., T. Milliman, K.C. McDonald, J. Kimball, M. Zhao, and M. Fahnestock, 2006. J. Geophys. Res. (In press)



Spring Thaw Impacts to Boreal-Arctic NPP

Spring Thaw Trend (SSM/T, 1988-2001)
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Map (at left) of the SSM/TI derived trend in the timing of spring
thaw for the pan-Arctic basin and Alaska, excluding non-vegetated
areas (in grey). The SSM/TI thaw signal coincides with the seasonal
relaxation of low temperature constraints to photosynthesis and
the onset of the growing season at high latitudes. The timing of
thaw corresponds closely with regional anomalies in annual NPP
derived from the MOD17A2 production efficiency model and the
AVHRR Pathfinder record over Alaska and Northwest Canada
(above). Negative anomalies relative to the long-term (1988-2001)
satellite record denote both earlier thaws and greater productivity
while positive values denote the opposite response. Mean annual
variability in springtime thaw is on the order of +7 days, with
corresponding impacts to annual productivity of approximately
1% per day. Satellite based observations of an advancing spring
thaw trend may be a physical mechanism driving positive vegetation
productivity trends and an advancing CO, cycle for northern
latitudes.

Source: Kimball, J.S., K.C. McDonald and M. Zhao, 2005. Earth Interactions (In-review)
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Normalized NPP Anomaly
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Changes in per capita NPP (1982-1999)
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Terrestrial Observation and Prediction System
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